
Beyond EIP

spoonm & skape

BlackHat Federal, 2006



Part I

Introduction



Who are we?
I spoonm

I Dropout bum
I Metasploit developer since late 2003

I skape
I Lead software developer by day
I Independent security researcher by night
I Joined the Metasploit project in 2004
I Responsible for all cool features



What’s this presentation about?
I What it’s not about

I New exploit / attack vectors
I New exploitation techniques
I 0day, bugs, etc

I What it is about
I What you can do after owning EIP
I The techniques to do it
I Our tools to support it



What’s this presentation about?
I What it’s not about

I New exploit / attack vectors
I New exploitation techniques
I 0day, bugs, etc

I What it is about
I What you can do after owning EIP
I The techniques to do it
I Our tools to support it



Plan of attack
I Introduction

I Payload background
I Technologies used as a basis

I Post-exploitation tools
I Background & review of existing tools
I The technology behind our tools
I How they can be used
I Crazy cool features for the end-user



Our definitions: the exploitation cycle
I Pre-exploitation - Before the attack

I Find a bug, isolate, write exploit
I Write any other tools, payloads, etc

I Exploitation - Leveraging the vulnerability
I Recon, information gathering, find target
I Initialize tools and infrastructure
I Launch the exploit

I Post-exploitation - Manipulating the target
I Arbitrary command execution
I Command execute via shell
I File access, VNC, pivoting, etc
I Advanced payload interaction



Our definitions: the exploitation cycle
I Pre-exploitation - Before the attack

I Find a bug, isolate, write exploit
I Write any other tools, payloads, etc

I Exploitation - Leveraging the vulnerability
I Recon, information gathering, find target
I Initialize tools and infrastructure
I Launch the exploit

I Post-exploitation - Manipulating the target
I Arbitrary command execution
I Command execute via shell
I File access, VNC, pivoting, etc
I Advanced payload interaction



Our definitions: the exploitation cycle
I Pre-exploitation - Before the attack

I Find a bug, isolate, write exploit
I Write any other tools, payloads, etc

I Exploitation - Leveraging the vulnerability
I Recon, information gathering, find target
I Initialize tools and infrastructure
I Launch the exploit

I Post-exploitation - Manipulating the target
I Arbitrary command execution
I Command execute via shell
I File access, VNC, pivoting, etc
I Advanced payload interaction



What’s a payload?
Definition

I Arbitrary code that is to be executed upon successful exploitation

How a payload works
I Client prepares the payload for execution
I Data may be embedded (cmd to execute, hostname, port, etc)
I Client transmits the payload via an exploit
I Target executes the payload



What’s a payload?
Definition

I Arbitrary code that is to be executed upon successful exploitation

How a payload works
I Client prepares the payload for execution

I Data may be embedded (cmd to execute, hostname, port, etc)
I Client transmits the payload via an exploit
I Target executes the payload



What’s a payload?
Definition

I Arbitrary code that is to be executed upon successful exploitation

How a payload works
I Client prepares the payload for execution
I Data may be embedded (cmd to execute, hostname, port, etc)

I Client transmits the payload via an exploit
I Target executes the payload



What’s a payload?
Definition

I Arbitrary code that is to be executed upon successful exploitation

How a payload works
I Client prepares the payload for execution
I Data may be embedded (cmd to execute, hostname, port, etc)
I Client transmits the payload via an exploit

I Target executes the payload



What’s a payload?
Definition

I Arbitrary code that is to be executed upon successful exploitation

How a payload works
I Client prepares the payload for execution
I Data may be embedded (cmd to execute, hostname, port, etc)
I Client transmits the payload via an exploit
I Target executes the payload



Payload stagers
I Stagers are typically network based and follow three basic steps

I Establish connection to attacker (reverse, portbind,
findsock)

I Read in a payload from the connection
I Setup connection information and branch to stage

I The three steps make it so stages are independent of the
connection method

I No need to have command shell payloads for reverse,
portbind, and findsock



Payload stagers
I Stagers are typically network based and follow three basic steps

I Establish connection to attacker (reverse, portbind,
findsock)

I Read in a payload from the connection
I Setup connection information and branch to stage

I The three steps make it so stages are independent of the
connection method

I No need to have command shell payloads for reverse,
portbind, and findsock



Why are payload stagers useful?
I Some vulnerabilities have limited space for the initial payload
I Typically much smaller than the stages they execute

I Eliminate the need to re-implement payloads for each
connection method

I Provides an abstraction level for loading code onto a remote
machine through any medium



Why are payload stagers useful?
I Some vulnerabilities have limited space for the initial payload
I Typically much smaller than the stages they execute
I Eliminate the need to re-implement payloads for each

connection method

I Provides an abstraction level for loading code onto a remote
machine through any medium



Why are payload stagers useful?
I Some vulnerabilities have limited space for the initial payload
I Typically much smaller than the stages they execute
I Eliminate the need to re-implement payloads for each

connection method
I Provides an abstraction level for loading code onto a remote

machine through any medium



Existing payload stager technology
I Standard reverse, portbind, and findsock stagers included in

Metasploit 2.2+
I LSD Win32 Assembly Components
I Found in public exploits (Solar Eclipse OpenSSL)



Payload stages
I Payload stages are executed by payload stagers and perform

arbitrary tasks

I Some examples of payload stages include
I Execute a command shell and redirect IO to the attacker
I Execute an arbitrary command (ex adduser)
I Download an executable from a URL and execute it



Payload stages
I Payload stages are executed by payload stagers and perform

arbitrary tasks
I Some examples of payload stages include

I Execute a command shell and redirect IO to the attacker
I Execute an arbitrary command (ex adduser)
I Download an executable from a URL and execute it



Why are payload stages useful?
I Highly reusable (connection independent, etc)
I Can conform to some sort of ABI

I Not subject to size limitations of individual vulnerabilities
I This means they can be arbitrarily complex



Why are payload stages useful?
I Highly reusable (connection independent, etc)
I Can conform to some sort of ABI
I Not subject to size limitations of individual vulnerabilities
I This means they can be arbitrarily complex



Part II

Post Exploitation



What is post-exploitation?
I The purpose of an exploit is to manipulate a target

I Manipulation of a target begins in post-exploitation
I Command shells are executed
I Files are downloaded

I Represents the culmination of the exploitation cycle



What is post-exploitation?
I The purpose of an exploit is to manipulate a target
I Manipulation of a target begins in post-exploitation

I Command shells are executed
I Files are downloaded

I Represents the culmination of the exploitation cycle



What is post-exploitation?
I The purpose of an exploit is to manipulate a target
I Manipulation of a target begins in post-exploitation

I Command shells are executed
I Files are downloaded

I Represents the culmination of the exploitation cycle



What do most people do in post-exploitation?
I Most people spawn a command shell

I Poor automation support
I Reliant on the shell’s intrinsic commands
I Limited to installed applications
I Can’t provide advanced features

I Some people use syscall proxies
I Good automation support
I Partial or full access to target native API
I Can be clumsy when implementing complex features
I Typically require specialized build steps



What do most people do in post-exploitation?
I Most people spawn a command shell

I Poor automation support
I Reliant on the shell’s intrinsic commands
I Limited to installed applications
I Can’t provide advanced features

I Some people use syscall proxies
I Good automation support
I Partial or full access to target native API
I Can be clumsy when implementing complex features
I Typically require specialized build steps



DispatchNinja - Caveman Post Exploitation
I The idea is to have interactive shellcode
I And be able to keep a very low footprint

I But also have lots of optional power

I Basically a shellcode read-eval-print loop
I First stage loops, reading/executing code
I DispatchNinja "modules" are sent and executed
I This is what we call "dispatching"

I Modules are responsible for their own mini-protocols
I Each module has a corresponding handler on client side

I Modules have a simple C ABI, and have a main function
I Most of our dN modules were written in C (shellforge)



DispatchNinja - Caveman Post Exploitation
I The idea is to have interactive shellcode
I And be able to keep a very low footprint
I But also have lots of optional power

I Basically a shellcode read-eval-print loop
I First stage loops, reading/executing code
I DispatchNinja "modules" are sent and executed
I This is what we call "dispatching"

I Modules are responsible for their own mini-protocols
I Each module has a corresponding handler on client side

I Modules have a simple C ABI, and have a main function
I Most of our dN modules were written in C (shellforge)



DispatchNinja - Caveman Post Exploitation
I The idea is to have interactive shellcode
I And be able to keep a very low footprint
I But also have lots of optional power

I Basically a shellcode read-eval-print loop
I First stage loops, reading/executing code
I DispatchNinja "modules" are sent and executed
I This is what we call "dispatching"

I Modules are responsible for their own mini-protocols
I Each module has a corresponding handler on client side

I Modules have a simple C ABI, and have a main function
I Most of our dN modules were written in C (shellforge)



DispatchNinja - Caveman Post Exploitation
I The idea is to have interactive shellcode
I And be able to keep a very low footprint
I But also have lots of optional power

I Basically a shellcode read-eval-print loop
I First stage loops, reading/executing code
I DispatchNinja "modules" are sent and executed
I This is what we call "dispatching"

I Modules are responsible for their own mini-protocols
I Each module has a corresponding handler on client side

I Modules have a simple C ABI, and have a main function
I Most of our dN modules were written in C (shellforge)



DispatchNinja - Caveman Post Exploitation
I The idea is to have interactive shellcode
I And be able to keep a very low footprint
I But also have lots of optional power

I Basically a shellcode read-eval-print loop
I First stage loops, reading/executing code
I DispatchNinja "modules" are sent and executed
I This is what we call "dispatching"

I Modules are responsible for their own mini-protocols
I Each module has a corresponding handler on client side

I Modules have a simple C ABI, and have a main function
I Most of our dN modules were written in C (shellforge)



DispatchNinja - Client side APIs
I Client side APIs wrap handler and module code
I Msf3 has ruby dN client side APIs

I APIs modeled after the ruby APIs (Dir, File, etc)
I Our APIs should support the majority of Ruby functionality



DispatchNinja - Client side APIs
I Client side APIs wrap handler and module code
I Msf3 has ruby dN client side APIs

I APIs modeled after the ruby APIs (Dir, File, etc)
I Our APIs should support the majority of Ruby functionality



irb#1(main):001:0> c = @c
=> #<Rex::Post::DispatchNinja::Client:0xb7bf542c

@sock=#<TCPSocket:0xb7bf5440>>
irb#1(main):002:0> c.dir.entries(’/tmp’)
=> [".", "..", ".X11-unix", ".ICE-unix", ".font-unix"]

irb#1(main):004:0> puts c.file.stat(’/etc/passwd’).pretty
Size: 1036 Blocks: 8 IO Block: 4096 Type: 0

Device: 774 Inode: 81499 Links: 1
Mode: 100644/rw-r--r--
Uid: 0 Gid: 0

Access: Tue Jul 26 20:08:09 EDT 2005
Modify: Wed Jul 06 20:45:04 EDT 2005
Change: Wed Jul 06 20:45:04 EDT 2005
=> nil

irb#1(main):005:0> Process.pid
=> 1496
irb#1(main):006:0> c.process.pid
=> 1498



What is Meterpreter?
I Short for Meta-Interpreter
I An advanced post-exploitation system
I Based on library injection technology
I First released with Metasploit 2.3
I Detailed write-up can be found in reference materials

I After exploitation, a Meterpreter server DLL is loaded on the
target

I Attackers use a Meterpreter client to interact with the server to...
I Load run-time extensions in the form of DLLs
I Interact with communication channels

I But before understanding Meterpreter, one should understand
library injection...



What is Meterpreter?
I Short for Meta-Interpreter
I An advanced post-exploitation system
I Based on library injection technology
I First released with Metasploit 2.3
I Detailed write-up can be found in reference materials

I After exploitation, a Meterpreter server DLL is loaded on the
target

I Attackers use a Meterpreter client to interact with the server to...
I Load run-time extensions in the form of DLLs
I Interact with communication channels

I But before understanding Meterpreter, one should understand
library injection...



What is Meterpreter?
I Short for Meta-Interpreter
I An advanced post-exploitation system
I Based on library injection technology
I First released with Metasploit 2.3
I Detailed write-up can be found in reference materials

I After exploitation, a Meterpreter server DLL is loaded on the
target

I Attackers use a Meterpreter client to interact with the server to...
I Load run-time extensions in the form of DLLs
I Interact with communication channels

I But before understanding Meterpreter, one should understand
library injection...



What is Meterpreter?
I Short for Meta-Interpreter
I An advanced post-exploitation system
I Based on library injection technology
I First released with Metasploit 2.3
I Detailed write-up can be found in reference materials

I After exploitation, a Meterpreter server DLL is loaded on the
target

I Attackers use a Meterpreter client to interact with the server to...
I Load run-time extensions in the form of DLLs
I Interact with communication channels

I But before understanding Meterpreter, one should understand
library injection...



Library injection
I Provides a method of loading a library (DLL) into an exploited

process

I Libraries are functionally equivalent to executables
I Full access to various OS-provided APIs
I Can do anything an executable can do

I Library injection is covert; no new processes need to be created
I Detailed write-up can be found in reference materials



Library injection
I Provides a method of loading a library (DLL) into an exploited

process
I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs
I Can do anything an executable can do

I Library injection is covert; no new processes need to be created
I Detailed write-up can be found in reference materials



Library injection
I Provides a method of loading a library (DLL) into an exploited

process
I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs
I Can do anything an executable can do

I Library injection is covert; no new processes need to be created

I Detailed write-up can be found in reference materials



Library injection
I Provides a method of loading a library (DLL) into an exploited

process
I Libraries are functionally equivalent to executables

I Full access to various OS-provided APIs
I Can do anything an executable can do

I Library injection is covert; no new processes need to be created
I Detailed write-up can be found in reference materials



Types of library injection
I Two primary methods exist to inject a library

1. On-Disk: loading a library from the target’s harddrive or a
file share

2. In-Memory: loading a library entirely from memory
I Both are conceptually portable to non-Windows platforms



On-Disk library injection
I Loading a library from disk has been the defacto standard for

Windows payloads
I Loading a library from a file share was first discussed by Brett

Moore

I On-Disk injection is subject to filtering by Antivirus due to
filesystem access

I Requires that the library file exist on the target’s harddrive or that
the file share be reachable



On-Disk library injection
I Loading a library from disk has been the defacto standard for

Windows payloads
I Loading a library from a file share was first discussed by Brett

Moore

I On-Disk injection is subject to filtering by Antivirus due to
filesystem access

I Requires that the library file exist on the target’s harddrive or that
the file share be reachable



In-Memory library injection
I First Windows implementation released with Metasploit 2.2

I Libraries are loaded entirely from memory
I No disk access means no Antivirus interference
I Most stealthy form of library injection thus far identified
I No disk access means no forensic trace if the machine loses

power



In-Memory library injection
I First Windows implementation released with Metasploit 2.2
I Libraries are loaded entirely from memory

I No disk access means no Antivirus interference
I Most stealthy form of library injection thus far identified
I No disk access means no forensic trace if the machine loses

power



In-Memory library injection
I First Windows implementation released with Metasploit 2.2
I Libraries are loaded entirely from memory
I No disk access means no Antivirus interference

I Most stealthy form of library injection thus far identified
I No disk access means no forensic trace if the machine loses

power



In-Memory library injection
I First Windows implementation released with Metasploit 2.2
I Libraries are loaded entirely from memory
I No disk access means no Antivirus interference
I Most stealthy form of library injection thus far identified

I No disk access means no forensic trace if the machine loses
power



In-Memory library injection
I First Windows implementation released with Metasploit 2.2
I Libraries are loaded entirely from memory
I No disk access means no Antivirus interference
I Most stealthy form of library injection thus far identified
I No disk access means no forensic trace if the machine loses

power



In-Memory library injection on Windows
I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked
I When loading libraries, low-level system calls are used to

interact with the file on disk
I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows
I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked

I When loading libraries, low-level system calls are used to
interact with the file on disk

I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows
I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked
I When loading libraries, low-level system calls are used to

interact with the file on disk
I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows
I Library loading on Windows is provided through NTDLL.DLL

I NTDLL.DLL only supports loading libraries from disk

I To load libraries from memory, NTDLL.DLL must be tricked
I When loading libraries, low-level system calls are used to

interact with the file on disk
I NtOpenFile

I NtCreateSection

I NtMapViewOfSection

I These routines can be hooked to change their behavior to
operate against a memory region

I Once hooked, calling LoadLibraryA with a unique pseudo file
name is all that’s needed



In-Memory library injection on Windows
I But why not just write a stub loader instead of using

NTDLL.DLL?

I Lots of reasons...
I Requires manual import processing
I Requires manual relocation fix-ups
I Requires loading dependent DLLs
I May require manual insertion into the loaded module lists
I Other uncommon PE features that wouldn’t be supported

I No compelling reason to re-implement what is already supplied
in NTDLL.DLL



In-Memory library injection on Windows
I But why not just write a stub loader instead of using

NTDLL.DLL?

I Lots of reasons...
I Requires manual import processing
I Requires manual relocation fix-ups
I Requires loading dependent DLLs
I May require manual insertion into the loaded module lists
I Other uncommon PE features that wouldn’t be supported

I No compelling reason to re-implement what is already supplied
in NTDLL.DLL



In-Memory library injection on Windows
I But why not just write a stub loader instead of using

NTDLL.DLL?

I Lots of reasons...
I Requires manual import processing
I Requires manual relocation fix-ups
I Requires loading dependent DLLs
I May require manual insertion into the loaded module lists
I Other uncommon PE features that wouldn’t be supported

I No compelling reason to re-implement what is already supplied
in NTDLL.DLL



Library injection in action: VNC
I VNC is a remote desktop protocol
I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004
I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies
I No installation required
I Does not make any registry or filesystem changes
I Does not listen on a port; uses payload connection as a

VNC client
I By using the generic library loading stager, VNC was simply

plugged in

I Extremely useful when illustrating security weaknesses
I Suits understand mouse movement much better than command

lines



Library injection in action: VNC
I VNC is a remote desktop protocol
I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004

I Metasploit team converted RealVNC to a standalone DLL
I No non-standard file dependencies
I No installation required
I Does not make any registry or filesystem changes
I Does not listen on a port; uses payload connection as a

VNC client
I By using the generic library loading stager, VNC was simply

plugged in

I Extremely useful when illustrating security weaknesses
I Suits understand mouse movement much better than command

lines



Library injection in action: VNC
I VNC is a remote desktop protocol
I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004
I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies
I No installation required
I Does not make any registry or filesystem changes
I Does not listen on a port; uses payload connection as a

VNC client

I By using the generic library loading stager, VNC was simply
plugged in

I Extremely useful when illustrating security weaknesses
I Suits understand mouse movement much better than command

lines



Library injection in action: VNC
I VNC is a remote desktop protocol
I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004
I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies
I No installation required
I Does not make any registry or filesystem changes
I Does not listen on a port; uses payload connection as a

VNC client
I By using the generic library loading stager, VNC was simply

plugged in

I Extremely useful when illustrating security weaknesses
I Suits understand mouse movement much better than command

lines



Library injection in action: VNC
I VNC is a remote desktop protocol
I Very useful for remote administration beyond simple CLIs

I First demonstrated at BlackHat USA 2004
I Metasploit team converted RealVNC to a standalone DLL

I No non-standard file dependencies
I No installation required
I Does not make any registry or filesystem changes
I Does not listen on a port; uses payload connection as a

VNC client
I By using the generic library loading stager, VNC was simply

plugged in

I Extremely useful when illustrating security weaknesses
I Suits understand mouse movement much better than command

lines



Meterpreter: Design goals
I Primary design goals are to be...

I Stealthy: no disk access and no new process by default
I Powerful: channelized communication and robust protocol
I Extensible: run-time augmentation of features with

extensions
I Portability also a design consideration

I The current server implementation is only for Windows



Meterpreter: Design goals
I Primary design goals are to be...

I Stealthy: no disk access and no new process by default

I Powerful: channelized communication and robust protocol
I Extensible: run-time augmentation of features with

extensions
I Portability also a design consideration

I The current server implementation is only for Windows



Meterpreter: Design goals
I Primary design goals are to be...

I Stealthy: no disk access and no new process by default
I Powerful: channelized communication and robust protocol

I Extensible: run-time augmentation of features with
extensions

I Portability also a design consideration
I The current server implementation is only for Windows



Meterpreter: Design goals
I Primary design goals are to be...

I Stealthy: no disk access and no new process by default
I Powerful: channelized communication and robust protocol
I Extensible: run-time augmentation of features with

extensions

I Portability also a design consideration
I The current server implementation is only for Windows



Meterpreter: Design goals
I Primary design goals are to be...

I Stealthy: no disk access and no new process by default
I Powerful: channelized communication and robust protocol
I Extensible: run-time augmentation of features with

extensions
I Portability also a design consideration

I The current server implementation is only for Windows



Architecture - design goals
I Very flexible protocol; should adapt to extension requirements

without modification

I Should expose a channelized communication system for
extensions (like openssh)

I Should be as stealthy as possible
I Should be portable to various platforms
I Clients on one platform should work with servers on another
I All non-critical features should be implemented by extensions



Architecture - design goals
I Very flexible protocol; should adapt to extension requirements

without modification
I Should expose a channelized communication system for

extensions (like openssh)

I Should be as stealthy as possible
I Should be portable to various platforms
I Clients on one platform should work with servers on another
I All non-critical features should be implemented by extensions



Architecture - design goals
I Very flexible protocol; should adapt to extension requirements

without modification
I Should expose a channelized communication system for

extensions (like openssh)
I Should be as stealthy as possible

I Should be portable to various platforms
I Clients on one platform should work with servers on another
I All non-critical features should be implemented by extensions



Architecture - design goals
I Very flexible protocol; should adapt to extension requirements

without modification
I Should expose a channelized communication system for

extensions (like openssh)
I Should be as stealthy as possible
I Should be portable to various platforms

I Clients on one platform should work with servers on another
I All non-critical features should be implemented by extensions



Architecture - design goals
I Very flexible protocol; should adapt to extension requirements

without modification
I Should expose a channelized communication system for

extensions (like openssh)
I Should be as stealthy as possible
I Should be portable to various platforms
I Clients on one platform should work with servers on another

I All non-critical features should be implemented by extensions



Architecture - design goals
I Very flexible protocol; should adapt to extension requirements

without modification
I Should expose a channelized communication system for

extensions (like openssh)
I Should be as stealthy as possible
I Should be portable to various platforms
I Clients on one platform should work with servers on another
I All non-critical features should be implemented by extensions



Architecture - protocol
I Uses TLV (Type-Length-Value) to support opaque data

I Every packet is composed of zero or more TLVs
I Packets themselves are TLVs

I Type is the packet type (request, response)
I Length is the length of the packet
I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible
I No formatting knowledge is required to parse the packet

outside of the TLV structure
I This allows a core TLV parsing engine without any

knowledge of the extensions or their protocols.



Architecture - protocol
I Uses TLV (Type-Length-Value) to support opaque data
I Every packet is composed of zero or more TLVs

I Packets themselves are TLVs
I Type is the packet type (request, response)
I Length is the length of the packet
I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible
I No formatting knowledge is required to parse the packet

outside of the TLV structure
I This allows a core TLV parsing engine without any

knowledge of the extensions or their protocols.



Architecture - protocol
I Uses TLV (Type-Length-Value) to support opaque data
I Every packet is composed of zero or more TLVs
I Packets themselves are TLVs

I Type is the packet type (request, response)
I Length is the length of the packet
I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible
I No formatting knowledge is required to parse the packet

outside of the TLV structure
I This allows a core TLV parsing engine without any

knowledge of the extensions or their protocols.



Architecture - protocol
I Uses TLV (Type-Length-Value) to support opaque data
I Every packet is composed of zero or more TLVs
I Packets themselves are TLVs

I Type is the packet type (request, response)
I Length is the length of the packet
I Value is zero or more embedded TLVs

I TLVs make packet parsing simplistic and flexible
I No formatting knowledge is required to parse the packet

outside of the TLV structure
I This allows a core TLV parsing engine without any

knowledge of the extensions or their protocols.



Core client/server interface
I Server written in C, client written in any language

I Provides a minimal interface to support the loading of extensions
I Implements basic packet transmission and dispatching
I Exposes channel allocation and management to extensions
I Also includes support for migrating the server to another running

process

I Metasploit 2.x has a perl Meterpreter client
I Metasploit 3.x has a ruby Meterpreter client



Core client/server interface
I Server written in C, client written in any language
I Provides a minimal interface to support the loading of extensions

I Implements basic packet transmission and dispatching
I Exposes channel allocation and management to extensions
I Also includes support for migrating the server to another running

process

I Metasploit 2.x has a perl Meterpreter client
I Metasploit 3.x has a ruby Meterpreter client



Core client/server interface
I Server written in C, client written in any language
I Provides a minimal interface to support the loading of extensions
I Implements basic packet transmission and dispatching
I Exposes channel allocation and management to extensions

I Also includes support for migrating the server to another running
process

I Metasploit 2.x has a perl Meterpreter client
I Metasploit 3.x has a ruby Meterpreter client



Core client/server interface
I Server written in C, client written in any language
I Provides a minimal interface to support the loading of extensions
I Implements basic packet transmission and dispatching
I Exposes channel allocation and management to extensions
I Also includes support for migrating the server to another running

process

I Metasploit 2.x has a perl Meterpreter client
I Metasploit 3.x has a ruby Meterpreter client



Core client/server interface
I Server written in C, client written in any language
I Provides a minimal interface to support the loading of extensions
I Implements basic packet transmission and dispatching
I Exposes channel allocation and management to extensions
I Also includes support for migrating the server to another running

process

I Metasploit 2.x has a perl Meterpreter client
I Metasploit 3.x has a ruby Meterpreter client



Augmenting features at run-time
I Adding new features is as simple as loading a DLL on the server

I Client uploads the extension DLL
I Server loads the DLL from memory and initializes it

I Client can begin sending commands for the new extension



Augmenting features at run-time
I Adding new features is as simple as loading a DLL on the server

I Client uploads the extension DLL
I Server loads the DLL from memory and initializes it

I Client can begin sending commands for the new extension



Meterpreter extensions in action: Stdapi
I Included in Metasploit 3.0
I Combination of previous extensions into standard interface

I Provides access to standard OS features
I Feature set provides for robust client-side automation
I Designed to mirror the Ruby API to make it easy to use existing

scripts against targets



Meterpreter extensions in action: Stdapi
I Included in Metasploit 3.0
I Combination of previous extensions into standard interface
I Provides access to standard OS features

I Feature set provides for robust client-side automation
I Designed to mirror the Ruby API to make it easy to use existing

scripts against targets



Meterpreter extensions in action: Stdapi
I Included in Metasploit 3.0
I Combination of previous extensions into standard interface
I Provides access to standard OS features
I Feature set provides for robust client-side automation

I Designed to mirror the Ruby API to make it easy to use existing
scripts against targets



Meterpreter extensions in action: Stdapi
I Included in Metasploit 3.0
I Combination of previous extensions into standard interface
I Provides access to standard OS features
I Feature set provides for robust client-side automation
I Designed to mirror the Ruby API to make it easy to use existing

scripts against targets



Why is Meterpreter useful?
I Standard interface makes it possible to use one client to perform

common actions on various platforms

I Execute a command interpreter and channelize the output
I Turn on the target’s USB webcam and begin streaming

video
I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?
I Standard interface makes it possible to use one client to perform

common actions on various platforms
I Execute a command interpreter and channelize the output

I Turn on the target’s USB webcam and begin streaming
video

I Programmatically automatable
I RPC-like protocol allows arbitrarily complex tasks to be

performed with a common interface
I Extension-based architecture makes Meterpreter

completely flexible
I Use of in-memory library injection makes it possible to run in a

stealth fashion



Why is Meterpreter useful?
I Standard interface makes it possible to use one client to perform

common actions on various platforms
I Execute a command interpreter and channelize the output
I Turn on the target’s USB webcam and begin streaming

video

I Programmatically automatable
I RPC-like protocol allows arbitrarily complex tasks to be

performed with a common interface
I Extension-based architecture makes Meterpreter

completely flexible
I Use of in-memory library injection makes it possible to run in a

stealth fashion



Why is Meterpreter useful?
I Standard interface makes it possible to use one client to perform

common actions on various platforms
I Execute a command interpreter and channelize the output
I Turn on the target’s USB webcam and begin streaming

video
I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Why is Meterpreter useful?
I Standard interface makes it possible to use one client to perform

common actions on various platforms
I Execute a command interpreter and channelize the output
I Turn on the target’s USB webcam and begin streaming

video
I Programmatically automatable

I RPC-like protocol allows arbitrarily complex tasks to be
performed with a common interface

I Extension-based architecture makes Meterpreter
completely flexible

I Use of in-memory library injection makes it possible to run in a
stealth fashion



Some of the features Meterpreter can offer
I Command execution & manipulation
I Registry interaction
I File system interaction
I Network pivoting & port forwarding
I Complete native API proxying
I Anything you can do as a native DLL, Meterpreter can do!
I Sky’s the limit!



Part III

Demos



Part IV

Conclusion



What does the future hold?
I Exploitation vectors and techniques are mature

I Public post-exploitation suites still very weak
I However, post-exploitation is maturing
I Metasploit 3.0 should be cool



What does the future hold?
I Exploitation vectors and techniques are mature
I Public post-exploitation suites still very weak

I However, post-exploitation is maturing
I Metasploit 3.0 should be cool



What does the future hold?
I Exploitation vectors and techniques are mature
I Public post-exploitation suites still very weak
I However, post-exploitation is maturing

I Metasploit 3.0 should be cool



What does the future hold?
I Exploitation vectors and techniques are mature
I Public post-exploitation suites still very weak
I However, post-exploitation is maturing
I Metasploit 3.0 should be cool



Reference Material
Payload Stages

I Library Injection
http://www.nologin.org/Downloads/Papers/
remote-library-injection.pdf

I Meterpreter
http:
//www.nologin.org/Downloads/Papers/meterpreter.pdf

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf
http://www.nologin.org/Downloads/Papers/meterpreter.pdf

	Introduction
	Introduction
	Payloads
	Stagers
	Stages



	Post Exploitation
	Post Exploitation
	Introduction
	DispatchNinja
	Library Injection
	Overview
	In-Memory Implementation on Windows
	Example DLL: VNC

	Meterpreter
	Architecture
	Example Extension: Stdapi



	Demos
	Demos

	Conclusion
	Conclusion


